Short Talk Inter-Disciplinary Explorations in Chemistry (I-DEC 2018)

"A General Catalytic Route to Enantioenriched Isoindolinones and Phthalides: Application in the Syntheses of (S)-PD172938 and Related Analogues"

Sumit K. Ray,^a Milon M. Sadhu, Rayhan G. Biswas,^a Rajshekhar A. Unhale^a and Vinod K. Singh^{*b}

^aDepartment of Chemistry, IISER Bhopal, Bhauri, Bhopal 462 066, Madhya Pradesh ^bDepartment of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh (E-mail:sumitkr@iiserb.ac.in)

Abstract: Optically active isoindolinones are prevalent in many natural products of immense synthetic importance with a myriad of biological activities. Many of these natural products display important pharmacological effects (Figure 1, 1a-d). For instance, (S)-PD172983 1a is a noted dopamine D_4 ligand and pazinaclone (DN2327) 1b is a sedative and anxiolytic drug. Similarly, phthalides or isobenzofuranones are five-membered benzo-fused γ -butyrolactones frequently distributed in a wide range of bioactive compounds (Figure 1, 2a-d). Despite the presence of some efficient approaches in the literature, there is no precedence for the syntheses of these two significant classes of compounds using a common catalytic approach in one-pot.

Figure 1. Selected biologically active isoindolinones and phthalides.

 α -Diazoesters have been extensively used as nucleophiles in enantioselective aldol reactions, Mannich-type reactions of aldimines as well as ketimines and allylic alkylation reaction. However, α -diazoesters have not been investigated in asymmetric Mannich-lactamization cascade and aldol-lactonization reaction for the synthesis of 3-substituted isoindolinones and phthalides. To address this, we envisioned exploring the possibility of a common catalytic route by exploiting intrinsic nucleophilic character of α -diazoesters in multicomponent one-pot reactions leading to isoindolinones and phthalides. In this conext, we have demonstrated Brønsted acid catalyzed enantioselective one-pot synthesis of enantioenriched isoindolinones and phthalides *via* Mannichlactamization cascade and aldol-lactonization reaction respectively from readily available precursors.

Scheme 1: Enantioselective synthesis of isoindolinones and phthalides.

References and Notes:

1. (a) Bisai, V.; Suneja, A.; Singh, V. K. Angew. Chem. Int. Ed. 2014, 53, 10737-10741. (b) Unhale, R. A.; Sadhu, M. M.; Ray, S. K.; Biswas, R. G.; Singh, V. K. Chem. Commun.2018, 54, 3516-3519.

Short Talk Inter-Disciplinary Explorations in Chemistry (I-DEC 2018)

Bio-Sketch of Speaker

Dr.Sumit Kumar Ray

DST Inspire Faculty

Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh, INDIA Contact Number: +91-9179876879 E-Mail: <u>sumitkr@iiserb.ac.in</u>

Dr. Sumit Kumar Ray obtained his BSc in Chemistry from Midnapur College (2006) and a Masters in Chemistry from IIT Guwahati (2008), followed by a PhD (Chemistry) from IIT Kanpur in 2013. His doctoral dissertation involved enantioselective Michael addition reactions of 1,3- Dicarbonyl compounds to 2-enoylpyridine *N*-Oxides catalyzed by chiral bisoxazoline-Zn(II) Complexes. During post-doctoral research at University of Geneva, Switzerland he synthesized a series of symmetrical and unsymmetrical cryptands in three or four steps from 1,4-dioxane and successfully used them as ditopic receptors. Currently, he is working as DST inspire faculty in IISER Bhopal.